//************************************************************************// // // // Java applet kepler.java to calculate elliptical orbit using Kepler's // // Laws. Compilation (javac -O kepler.java) produces two class files: // // java.class and barSlider.class. The program may then be implemented // // from an HTML file containing // // // // // // Your browser doesn't support JAVA---sorry! // // // // // // assuming the two class files are in the same directory as the // // HTML file (otherwise a complete path to the class files must be // // specified with a codebase=path specification in the applet tag---see // // http://csep10.phys.utk.edu/guidry/java/codebase_spec.html for more // // detail on the use of the codebase specification). // // // // (Any HTML between the and tags will be // // automatically displayed by a browser that does not support JAVA. // // Additional HTML can be added there to implement a default procedure // // for non-JAVA browsers. Java capable browsers ignore any HTML // // between these tags.) // // // // // // Mike Guidry, Jan. 12, 1998 // // guidry@utk.edu // // // //************************************************************************// import java.applet.*; import java.awt.*; import java.net.*; import java.lang.*; public class kepler extends Applet implements Runnable { barSlider slide1; // static double slideval; static final int nsteps = 300; // Time steps per revolution static final int pixelWidth = 220; // Width of ellipse in pixels static final int xoff = 50; // x offset for plot static final int yoff = 10; // y offset for plot int delay = 30; // speed control // Conversion factors from Kepler natural units to CGS // and some basic constants static final double secyear=3.155815e+7; static final double AUcm = 1.496e+13; static final double Msolar = 1.989e+33; static final double G = 6.67259e-8; // Input data & associated stuff double a = 2.55; // semimajor in AU double acm = AUcm * a; // semimajor in cm double pixelScale = (double)pixelWidth/a/2.0; // Scale AU --> pixels int apixel = (int)(pixelScale*a); // semimajor in pixels double e = 0.65; // eccentricity double b = Math.sqrt(a*a*(1.0-e*e)); // semiminor in AU int bpixel = (int)(pixelScale*b); // semiminor in pixels double M = 3.05; // total mass (solar) double Mgrams = M * Msolar; // total mass (grams) double P; // period in years double Psec; // period in sec double r = a*(1.0 - e); // r from focus in AU double rcm = acm*(1.0 - e); // r from focus in cm double theta = 0.0; // angle from focus double dtheta; // angle increment double t = 0.0; // time double dt; // time increment int xshift; // java coordinate shift int yshift; // java coordinate shift int tcounter=0; // time print interval double timeprint=0.0; // printed time Image sun; Image planet; int sizeSun; int sizePlanet; int x = 0; int y = 0; Color c1 = new Color(0x000000); Color c2 = new Color(0xffffff); Font font = new Font("Helvetica", Font.BOLD, 10); FontMetrics fontFontMetrics = getFontMetrics(font); Image offscreen; int imagewidth, imageheight; Thread animator = null; boolean please_stop = false; boolean show_orbit = true; boolean psunLine = false; boolean showInfo = true; public void init() { URL codeBase = getCodeBase(); sun = getImage(codeBase,"siriusA.jpg"); planet = getImage(codeBase,"siriusB.jpg"); // Measure size of images being animated. We need this // information later if we do clipping, and for positioning. // // ----------------------------------------------------------------- // Following two methods seem to work with appletviewer, but // not with browsers (?). When run under browsers they tend to // return -1 for the size. // sizeSun = sun.getWidth(this); // sizePlanet = planet.getWidth(this); // Replaced with the hard-wired sizes below. // ------------------------------------------------------------------ sizeSun = 28; // hardwired image size sizePlanet = 15; // hardwired image size // Calculate period in years from Kepler's 3rd Law and // convert to CGS units (seconds). Then calculate the length of // a timestep in seconds. P = Math.sqrt(a*a*a/M); Psec = secyear * P; dt = Psec/((double) nsteps); // Lay out the GUI Display and implement the corresponding // event handlers. First define some colors and fonts and // Lay out a set of panels. Will use BorderLayout to lay out // north, south, east, and west panels framing the plot region. // Only north and south panels will get widgets. The event // handlers for the widgets are contained in the method // action (Event event, Object arg) defined below, except for // the slidebar, which has its own class barSlider with an // Color panelbg=Color.cyan.darker(); Color panelfg=Color.white; Color buttonfg=Color.black; Font buttonFont = new Font ("Helvetica",Font.BOLD, 11); Font textFont = new Font("Helvetica",Font.PLAIN,11); setLayout(new BorderLayout()); Panel pt = new Panel(); add("North",pt); pt.setBackground(panelbg); Panel pb = new Panel(); add("South",pb); pb.setBackground(panelbg); Panel pl = new Panel(); add("East",pl); pl.setBackground(panelbg); Panel pr = new Panel(); add("West",pr); pr.setBackground(panelbg); // Now add GUI components to the top and bottom panels // Define checkbox group to turn planet-sun line on or off CheckboxGroup cbgroup = new CheckboxGroup(); Checkbox checkbox1 = new Checkbox("Yes", cbgroup, false); Checkbox checkbox2 = new Checkbox("No", cbgroup, true); Label psline = new Label("Show Line:", Label.RIGHT); psline.setForeground(Color.yellow); pb.add(slide1=new barSlider((int)(e*100.),0,90)); // slideval=barSlider.slideval; Choice showOrbit = new Choice(); showOrbit.addItem("Orbit"); showOrbit.addItem("No Orbit"); showOrbit.setBackground(Color.pink); Choice setSpeed = new Choice(); setSpeed.addItem("Medium"); setSpeed.addItem("Slow"); setSpeed.addItem("Fast"); setSpeed.setBackground(Color.pink); pt.setForeground(panelfg); pt.setBackground(panelbg); pt.setFont(buttonFont); // Set a FlowLayout for the top panel pt.setLayout(new FlowLayout(FlowLayout.CENTER,12,8)); pt.add(psline); pt.add(checkbox1); pt.add(checkbox2); pt.add(showOrbit); pt.add(setSpeed); } // --------------------------------------------------------------------- // Add a method to deal with processing GUI events // (buttons, textareas, checkboxes, ... Slidebar events are handled in // a separate class with its own event handler---see class barSlider) // --------------------------------------------------------------------- public boolean action(Event event, Object arg) { Label flag; String s; /* --- Comment out for now down to checkbox action // Process TextField Actions if(event.target instanceof TextField) { s=textfield1.getText(); showStatus("TextField Action: "+s +" was the value"); temp=(float)(Integer.parseInt(s)); wien=false; BV=false; UB=false; SB=false; panel.start(); } // Process Button Actions if(event.target instanceof Button) { if(arg == " New ") { showStatus("Button Action: New pushed"); planck newt=new planck(); temp=planckSlider.slideval; wien=false; BV=false; UB=false; SB=false; planck.doplot=true; if(planck.index < planck.imax-1) { planck.index ++; planck.T[planck.index]=(int)temp; } else { planck.toomany=true; } newt.init(); panel.start(); // See pp. 364, ff. Java Prog. Explorer } if(arg == " Clear ") { showStatus("Button Action: Clear pushed"); planck.index=-1; planck.doplot=false; panel.start(); } } */ // -- End comment out // Process Checkbox actions if(event.target instanceof Checkbox) { Checkbox checkbox=(Checkbox)event.target; String label=checkbox.getLabel(); if(label == "Yes") { showStatus("Checkbox Action: Checkbox=Yes"); psunLine=true; } if(label == "No") { showStatus("Checkbox Action: Checkbox=No"); psunLine=false; } if(label == "yes") { showStatus("Checkbox Action: Checkbox=yes"); // normalize=true; } if(label == "no") { showStatus("Checkbox Action: Checkbox=no"); // normalize=false; } // stop(); // start(); } // Process Choice Menu actions if(event.target instanceof Choice) { if(arg == "Orbit") { showStatus("Choice Action: Choice=Orbit"); show_orbit = true; } if(arg == "No Orbit") { showStatus("Choice Action: Choice=No Orbit"); show_orbit = false; } if(arg == "Slow") { showStatus("Choice Action: Choice=Slow"); delay = 100; } if(arg == "Medium") { showStatus("Choice Action: Choice=Medium"); delay = 30; } if(arg == "Fast") { showStatus("Choice Action: Choice=Fast"); delay = 5; } // stop(); // start(); } return true; } //---- End action method ----// // Start the animation public void start() { e = barSlider.slideval; animator = new Thread(this); animator.start(); } // Stop the animation public void stop() { if (animator != null) animator.stop(); animator = null; } // Toggle stop and start of animation on mouse clicks. // Display prompts and mousedown coordinates in status bar public boolean mouseDown(Event e, int x, int y) { // if running, stop it. Otherwise, start it. // Only accept clicks within rectangle defined by // outer if statement. if(x > 18 && x<440 && y>47 && y<312) { // rectangle for mousedown if (animator != null) { please_stop = true; showStatus("mousedown: x="+x+" y="+y+" Click to Restart"); } else { showStatus("mousedown: x="+x+" y="+y+" Click to Stop"); please_stop = false; start(); } } return true; } // Method to draw the applet background void drawBackground(Graphics gr, Color c1) { double elast=e; e = barSlider.slideval; if(e != elast){t=0.0;} // Reset time if e has changed Dimension size = this.size(); int w = size.width; int h = size.height; b = Math.sqrt(a*a*(1.0-e*e)); // bpixel = (int)Math.sqrt((double)apixel*(double)apixel*(1.-e*e)); bpixel = (int)(b*pixelScale); gr.setColor(c1); gr.fillRect(0, 0, w, h); xshift = w/2 + (int)(e*a*pixelScale) + xoff; yshift = h/2 +yoff; gr.drawImage(sun, xshift - sizeSun/2, yshift - sizeSun/2, this); if (show_orbit == true){ gr.setColor(Color.gray); gr.drawOval(w/2-apixel+xoff, yshift-bpixel, 2*apixel, 2*bpixel); } gr.setFont(font); gr.setColor(Color.cyan); gr.drawString("e = "+decimalPlace(2,e),15,60); gr.drawString("a = "+decimalPlace(2,a)+" AU",15,74); gr.drawString("M = "+decimalPlace(2,M)+" solar",15,88); gr.drawString("Period = "+decimalPlace(2,P)+" yr",15,102); // Print elapsed time every 20 time steps tcounter = (tcounter+1)%21; if (tcounter == 1){ timeprint=t; } // Draw planet-sun line if (psunLine == true){ gr.setColor(Color.cyan); gr.drawLine(x,y,xshift,yshift); } String timestring=decimalPlace(2,timeprint/secyear); gr.drawString("Time = "+timestring+" yr",15,116); gr.drawString("R = "+decimalPlace(2,r)+" AU",15,130); // Display the information if the switch is toggled if(showInfo == true) { gr.setColor(Color.pink); gr.drawLine(w/2+xoff-apixel, yshift, w/2+xoff, yshift); gr.setFont(font); int xwida = fontFontMetrics.stringWidth("a = x.x AU"); gr.drawString("a = "+decimalPlace(2,a)+" AU", (w/2+xoff-apixel/2)-xwida/2, yshift-15); gr.drawLine(w/2+xoff, yshift, w/2+xoff, yshift-bpixel); int ywidb = fontFontMetrics.getAscent()/2; gr.drawString("b = "+decimalPlace(2,b)+" AU", w/2+xoff+10, yshift-bpixel/2+ywidb); } } // Method decimalPlace returns string that is string representation of double // with a fixed number of places after the decimal. The number of places // after the decimal is given by the integer "nright" and the double is // passed as the variable "number". Routine assumes number is not in // scientific (e) notation. Presently no check is made to ensure that // this is true. Should be easy to fix that. // // EXAMPLE: String nstring = decimalPlace(nright,number) // EXAMPLE: g.drawString("Variable=" + decimalPlace(3,variable),100,200) public String decimalPlace(int nright, double number) { double n=number; String tright2=""; String total=String.valueOf(n); int nperiod=total.indexOf("."); if(nperiod == 0 || nperiod == -1){return total;} String tleft=total.substring(0,nperiod); String tright=total.substring(nperiod); int temp1=0, temp2=nright+1; if(tright.length() > nright) { try{tright2=tright.substring(temp1,temp2);} catch (StringIndexOutOfBoundsException e) { ; } } else { tright2=tright; } return tleft+tright2; } // Draw background and images at their current positions public void paint(Graphics g) { drawBackground(g, c1); g.drawImage(planet, x-sizePlanet/2, y-sizePlanet/2, this); } // Main animator thread. The animation thread is based on // an example from the book _Java in a Nutshell_ by David Flanagan, // and implements both double buffering and clipping techniques to // prevent flickering. However, clipping is presently commented // out. public void run() { while(!please_stop) { Dimension d = this.size(); // Create offscreen image at the right size. if ((offscreen == null) || ((imagewidth != d.width) || (imageheight != d.height))) { // if (offscreen != null) offscreen.flush(); offscreen = this.createImage(d.width, d.height); imagewidth = d.width; imageheight = d.height; } // Set up clipping. We only need to draw within the // old rectangle that needs to be cleared and the new // one that is being drawn. // the old rectangle Rectangle oldrect = new Rectangle(x-sizePlanet/2, y-sizePlanet/2, sizePlanet, sizePlanet); // Update the coordinates for animation. // Update time and theta t = t + dt; dtheta = Math.sqrt(G*Mgrams*acm*(1.0 - e*e))*dt/rcm/rcm; theta = theta + dtheta; // Calculate new r relative to focus r = a*(1.0 - e*e)/(1.0 + e*Math.cos(theta)); rcm = AUcm * r; // Calculate relative x and y in pixels int xrel = (int)(r * Math.cos(theta) * pixelScale); int yrel = (int)(r * Math.sin(theta) * pixelScale); // Calculate new x and y relative to focus x = xrel + xshift; y = yrel + yshift; // the new rectangle Rectangle newrect = new Rectangle(x-sizePlanet/2, y-sizePlanet/2, sizePlanet, sizePlanet); // Compute the union of the rectangles Rectangle r = newrect.union(oldrect); // Use this rectangle as the clipping region when // drawing to the offscreen image, and when copying // from the offscreen image to the screen. // Clipping is disabled if the two g.clipRect() statements // below are commented out. Clipping allows only the // planet to be redrawn, so if enabled the applet will not // redraw orbits and Sun position and labels when e slider // is changed. Graphics g = offscreen.getGraphics(); // g.clipRect(r.x, r.y, r.width, r.height); // Draw into the off-screen image. paint(g); // Copy it all at once to the screen, using clipping. g = this.getGraphics(); // g.clipRect(r.x, r.y, r.width, r.height); g.drawImage(offscreen, 0, 0, this); // wait then draw it again try { Thread.sleep(delay); } catch (InterruptedException e) { ; } } animator = null; } } // ----------- End class kepler ----------------- // /****************************************************************** // // // // Class barSlider implements a slidebar for input of the // // eccentricity. Class has its own event processor that sets the // // class float variable "slideval" equal to the value of the // // slidebar when it is moved. This variable may then be accessed // // from another class as "barSlider.slideval". // // // // Mike Guidry Feb. 20, 1997 // // // // *******************************************************************/ class barSlider extends Panel { Scrollbar slider; Label value; static double slideval; Font font = new Font("Helvetica", Font.BOLD, 12); public barSlider(int i, int min, int max) { setFont(font); setLayout(new GridLayout(1,3,15,15)); add(value = new Label("e: ",Label.RIGHT)); value.setForeground(Color.black); add(slider = new Scrollbar(Scrollbar.HORIZONTAL, i, 100, min, max)); slider.setBackground(Color.white); add(value = new Label(String.valueOf((float)i/100.),Label.LEFT)); value.setForeground(Color.black); slideval=(double)i/100.; } public boolean handleEvent(Event evt) { if (evt.target.equals(slider)) { int i = slider.getValue(); value.setText(String.valueOf((float)i/100.)); slideval=(double)i/100.; } return true; } // Rescale the preferred size of buttons in the layouts public Dimension preferredSize() { return new Dimension(600, 18); } } // ----- End class barSlider -----